A Hochschild–Kostant–Rosenberg theorem for cyclic homology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic homology and equivariant homology

The purpose of this paper is to explore the relationship between the cyclic homology and cohomology theories of Connes [9-11], see also Loday and Quillen [20], and "IF equivariant homology and cohomology theories. Here II" is the circle group. The most general results involve the definitions of the cyclic homology of cyclic chain complexes and the notions of cyclic and cocyclic spaces so precis...

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

A COMPARISON THEOREM FOR n - HOMOLOGY

Introduction. The purpose of this paper is to compare homological properties of an analytic representation of a semisimple Lie group and of its Harish-Chandra module. Throughout the paper G0 denotes a connected semisimple Lie group with finite center. Let π be an admissible representation of G0 on a complete, locally convex Hausdorff topological vector space Mπ . Vectors in Mπ transforming fini...

متن کامل

Equivariant Periodic Cyclic Homology

We define and study equivariant periodic cyclic homology for locally compact groups. This can be viewed as a noncommutative generalization of equivariant de Rham cohomology. Although the construction resembles the Cuntz-Quillen approach to ordinary cyclic homology, a completely new feature in the equivariant setting is the fact that the basic ingredient in the theory is not a complex in the usu...

متن کامل

Olson’s Theorem for Cyclic Groups

Let n be a large number. A subset A of Zn is complete if SA = Zn, where SA is the collection of the subset sums of A. Olson proved that if n is prime and |A| > 2n1/2, then SA is complete. We show that a similar result for the case when n is a composite number, using a different approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2017

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2016.10.005